Fernique-type inequalities and moduli of continuity for anisotropic Gaussian random fields.

نویسندگان

  • Mark M Meerschaert
  • Wensheng Wang
  • Yimin Xiao
چکیده

This paper is concerned with sample path properties of anisotropic Gaussian random fields. We establish Fernique-type inequalities and utilize them to study the global and local moduli of continuity for anisotropic Gaussian random fields. Applications to fractional Brownian sheets and to the solutions of stochastic partial differential equations are investigated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Local times of Anisotropic Gaussian Random Fields

The joint continuity of local times is proved for a large class of anisotropic Gaussian random fields. Sharp local and global Hölder conditions for the local times under an anisotropic metric are established. These results are useful for studying sample path and fractal properties of the Gaussian fields.

متن کامل

Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes

This article provides a detailed analysis of the behavior of suprema and moduli of continuity for a large class of random fields which generalize Gaussian processes, sub-Gaussian processes, and random fields that are in the nth chaos of a Wiener process. An upper bound of Dudley type on the tail of the random field’s supremum is derived using a generic chaining argument; it implies similar resu...

متن کامل

Continuity in the Hurst Index of the Local Times of Anisotropic Gaussian Random Fields

Let {{XH(t), t ∈ RN}, H ∈ (0, 1)N} be a family of (N, d)-anisotropic Gaussian random fields with generalized Hurst indices H = (H1, . . . ,HN ) ∈ (0, 1) . Under certain general conditions, we prove that the local time of {XH0(t), t ∈ RN} is jointly continuous whenever ∑N `=1 1/H 0 ` > d. Moreover we show that, when H approaches H , the law of the local times of X(t) converges weakly [in the spa...

متن کامل

An error bound in the Sudakov-Fernique inequality

We obtain an asymptotically sharp error bound in the classical Sudakov-Fernique comparison inequality for finite collections of gaussian random variables. Our proof is short and selfcontained, and gives an easy alternative argument for the classical inequality, extended to the case of non-centered processes. 1 Statement of the result Gaussian comparison inequalities are among the most important...

متن کامل

Comparison and Anti-concentration Bounds for Maxima of Gaussian Random Vectors

Slepian and Sudakov-Fernique type inequalities, which compare expectations of maxima of Gaussian random vectors under certain restrictions on the covariance matrices, play an important role in probability theory, especially in empirical process and extreme value theories. Here we give explicit comparisons of expectations of smooth functions and distribution functions of maxima of Gaussian rando...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Transactions of the American mathematical society

دوره 2013 365  شماره 

صفحات  -

تاریخ انتشار 2012